Fault Diagnosis in Enterprise Software Systems Using Discrete Monitoring Data
نویسنده
چکیده
Success for many businesses depends on their information software systems. Keeping these systems operational is critical, as failure in these systems is costly. Such systems are in many cases sophisticated, distributed and dynamically composed. To ensure high availability and correct operation, it is essential that failures be detected promptly, their causes diagnosed and remedial actions taken. Although automated recovery approaches exists for specific problem domains, the problem-resolution process is in many cases manual and painstaking. Computer support personnel put a great deal of effort into resolving the reported failures. The growing size and complexity of these systems creates the need to automate this process. The primary focus of our research is on automated fault diagnosis and recovery using discrete monitoring data such as log files and notifications. Our goal is to quickly pinpoint the root-cause of a failure. Our contributions are: • Modelling discrete monitoring data for automated analysis, • Automatically leveraging common symptoms of failures from historic monitoring data using such models to pinpoint faults, and • Providing a model for decision-making under uncertainty such that appropriate recovery actions are chosen. Failures in such systems are caused by software defects, human error, hardware failures, environmental conditions and malicious behaviour. Our primary focus in this thesis is on software defects and misconfiguration.
منابع مشابه
Application of Radial Basis Neural Networks in Fault Diagnosis of Synchronous Generator
This paper presents the application of radial basis neural networks to the development of a novel method for the condition monitoring and fault diagnosis of synchronous generators. In the proposed scheme, flux linkage analysis is used to reach a decision. Probabilistic neural network (PNN) and discrete wavelet transform (DWT) are used in design of fault diagnosis system. PNN as main part of thi...
متن کاملAN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS
In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...
متن کاملAdaptive Monitoring of Complex Software Systems using Management Metrics
Software systems supporting networked, transaction-oriented services are large and complex; they comprise a multitude of inter-dependent layers and components, and they implement many dynamic optimization mechanisms. In addition, these systems are subject to workload that is hard to predict. These factors make monitoring these systems as well as performing problem determination challenging and ...
متن کاملAdaptive Monitoring with Dynamic Differential Tracing-Based Diagnosis
Ensuring high availability, adequate performance, and proper operation of enterprise software systems requires continuous monitoring. Today, most systems operate with minimal monitoring, typically based on service-level objectives (SLOs). Detailed metric-based monitoring is often too costly to use in production, while tracing is prohibitively expensive. Configuring monitoring when problems occu...
متن کاملDetection of high impedance faults in distribution networks using Discrete Fourier Transform
In this paper, a new method for extracting dynamic properties for High Impedance Fault (HIF) detection using discrete Fourier transform (DFT) is proposed. Unlike conventional methods that use features extracted from data windows after fault to detect high impedance fault, in the proposed method, using the disturbance detection algorithm in the network, the normalized changes of the selected fea...
متن کامل